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UIP-2017-05-7249 (MANDphy)
IP-2018-01-2449 (MiTPDE)



Main question

Under which conditions any solution u : R+ × Rd → R to

∂tu+ divxf(u) = D2
x ·A(u) ,

admits the strong trace at t = 0, i.e. does there exist u0 ∈ L∞(Rd) such that

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) .

divxf(u) . . . convective term
D2

x ·A(u) . . . diffusive term
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Main question

Under which conditions any solution u : R+ × Rd → R to

∂tu+ divxf(u) = D2
x ·A(u) ,

admits the strong trace at t = 0, i.e. does there exist u0 ∈ L∞(Rd) such that

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) .

Motivation for the equation: flow in porous media (CO2 sequestration)

heterogeneous layers −→ discontinuous flux and a lack of diffusion in some
directions

Motivation for studying strong traces:

Formulation, well-posedness, optimal control, etc., for initial-boundary
problems.

Characterising the limit of hyperbolic relaxation towards a scalar conservation
law.
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Main question

Under which conditions any solution u : R+ × Rd → R to

∂tu+ divxf(u) = D2
x ·A(u) ,

admits the strong trace at t = 0, i.e. does there exist u0 ∈ L∞(Rd) such that

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) .

Let us first consider the case: A = 0 .
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First order quasilinear equations

{
∂tu+ divxf(u) = 0 in Rd+1

+ := R+ × Rd ,
u|t=0 = u0 ∈ L∞(Rd) ,

where f : R→ Rd (homogeneous) flux, u : Rd+1
+ → R unknown.

Classical solutions are too strong (we want allow discontinuities in x)

Weak solutions: u ∈ L1
loc(R

d+1
+ ) s.t. f(u) ∈ L1

loc(R
d+1
+ ;Rd) and ∀ϕ ∈ C∞c (R1+d)∫

Rd+1
+

uϕt + f(u) · ∇xϕdxdt+

∫
Rd

u0ϕ(0, ·) dx = 0 .

For the uniqueness we need to impose some conditions on discontinuities.
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d+1
+ ) s.t. f(u) ∈ L1

loc(R
d+1
+ ;Rd) and ∀ϕ ∈ C∞c (R1+d)∫

Rd+1
+

uϕt + f(u) · ∇xϕdxdt+

∫
Rd

u0ϕ(0, ·) dx = 0 .

Even for smooth f’s non-uniqueness:

d = 1, f(λ) = λ2

2 (Burgers equation), u0(x) =

{
0 , x < 0

1 , x ≥ 0
.

Both functions are a weak solution:

u1(t, x) =

{
0 , x < t/2

1 , x ≥ t/2
, u2(x) =


0 , x < 0

x/t , 0 ≤ x < t

1 , x ≥ t
(rarefraction wave)
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Vanishing Viscosity 1/2

Consider only those weak solutions that can be reached as a limit ε→ 0+ of the
sequence of solutions (uε):{

∂tu
ε + divxf(uε) = ε∆uε in Rd+1

+ := R+ × Rd ,
uε|t=0 = u0 ∈ L∞(Rd) .

For η ∈ C2(R) convex (i.e. η′′ ≥ 0) and ϕ ∈ C2
c(R1+d), ϕ ≥ 0, we multiply the

equation by −η′(uε)ϕ and integrate over R1+d
+ :

−
∫
Rd+1

+

∂tu
εη′(uε)ϕ+ f ′(uε) · ∇uεη′(uε)ϕdxdt = −ε

∫
Rd+1

+

∆uεη′(uε)ϕdxdt
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Vanishing Viscosity 2/2

Using

∂tu
εη′(uε) = ∂t

(
η(uε)

)
and f ′(uε) · ∇uεη′(uε) = div

(
fη(uε)

)
,

where fη(λ) =
∫ λ
0

f ′(s)η′(s) ds, for the left hand side we have

−
∫
R1+d

+

∂tu
εη′(uε)ϕ+ f ′(uε) · ∇uεη′(uε)ϕdxdt

=

∫
R1+d

+

η(uε)∂tϕ+ fη(uε) · ∇ϕdxdt+

∫
Rd

η(u0)ϕ(0, ·) dx .

The right hand side satisfies

−ε
∫
R1+d

+

∆uεη′(uε)ϕdxdt = ε

∫
R1+d

+

η′(uε)∇uε · ∇ϕ+ |∇uε|2η′′(uε)ϕ︸ ︷︷ ︸
≥0

dxdt

≥−ε
∫
R1+d

+

η(uε)∆ϕdxdt

ε→0−→ 0

M. Erceg (UNIZG) Strong traces to degenerate parabolic equations 5/ 15



Vanishing Viscosity 2/2

Using

∂tu
εη′(uε) = ∂t

(
η(uε)

)
and f ′(uε) · ∇uεη′(uε) = div

(
fη(uε)

)
,

where fη(λ) =
∫ λ
0

f ′(s)η′(s) ds, for the left hand side we have

−
∫
R1+d

+

∂tu
εη′(uε)ϕ+ f ′(uε) · ∇uεη′(uε)ϕdxdt

=

∫
R1+d

+

η(uε)∂tϕ+ fη(uε) · ∇ϕdxdt+

∫
Rd

η(u0)ϕ(0, ·) dx .

The right hand side satisfies

−ε
∫
R1+d

+

∆uεη′(uε)ϕdxdt = ε

∫
R1+d

+

η′(uε)∇uε · ∇ϕ+ |∇uε|2η′′(uε)ϕ︸ ︷︷ ︸
≥0

dxdt

≥−ε
∫
R1+d

+

η(uε)∆ϕdxdt
ε→0−→ 0

M. Erceg (UNIZG) Strong traces to degenerate parabolic equations 5/ 15



Entropy solutions

{
∂tu+ divxf(u) = 0 in Rd+1

+ := R+ × Rd ,
u|t=0 = u0 ∈ L∞(Rd) .

Entropy solutions: u a weak solution and s.t. ∀η ∈ C(R) convex and

∀ϕ ∈ C∞c (R1+d), ϕ ≥ 0,∫
Rd+1

+

η(u)ϕt + fη(u) · ∇xϕdxdt+

∫
Rd

η(u0)ϕ(0, ·) dx ≥ 0 ,

here fη(λ) =
∫ λ
0

f ′η′ ds is an entropy-flux.
η is called (mathematical) entropy (−η corresponds to physical entropy)
The above inequality is due to the fact that the physical entropy has a
tendency to increase in time, i.e. the mathematical entropy decreases in time

Kružkov (1970): existence and uniqueness of entropy solutions for smooth
heterogeneous fluxes f.

Existence: vanishing viscosity method; Uniqueness: method of doubling
variables

Panov (2010): existence of entropy solutions for non-smooth heterogeneous fluxes
under non-degeneracy assumptions

un solution for the regularised flux fn, and apply a compactness result
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Kružkov (1970): existence and uniqueness of entropy solutions for smooth
heterogeneous fluxes f.

Existence: vanishing viscosity method; Uniqueness: method of doubling
variables

Panov (2010): existence of entropy solutions for non-smooth heterogeneous fluxes
under non-degeneracy assumptions

un solution for the regularised flux fn, and apply a compactness result

M. Erceg (UNIZG) Strong traces to degenerate parabolic equations 6/ 15



Strong traces (A = 0)

{
∂tu+ divxf(u) = 0 in Rd+1

+ := R+ × Rd ,
u|t=0 = u0 ∈ L∞(Rd) .

∀λ ∈ R and ∀ϕ ∈ C∞c (R1+d), ϕ ≥ 0:∫
Rd+1

+

|u−λ|ϕt + sgn(u−λ)(f(u)− f(λ)) ·∇xϕdxdt+

∫
Rd

|u0−λ|ϕ(0, ·) dx ≥ 0 .

⇐⇒

(a.e. λ ∈ R) ∂t|u− λ|+ divx
(

sgn(u− λ)(f(u)− f(λ))
)
≤ 0 in D′(Rd+1

+ ) ,

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) .

strong trace

Vasseur (2001): existence of strong traces for entropy solutions for smooth fluxes
f and with a non-degeneracy condition

Panov (2005, 2007): existence of strong traces for entropy solutions (without
non-degeneracy conditions)

Neves, Panov, Silva (2018): existence of strong traces for entropy solutions for
heterogeneous fluxes f and with a non-degeneracy condition

The result does not hold for weak solutions!
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Strong traces (A = 0) – comments

∂tu+ divxf(u) = 0 in Rd+1
+ := R+ × Rd

Idea of the proof:

u admits the strong trace ⇐⇒

um(t,x,y) := u
( t
m
,
x

m
+ y

)
is precompact in L1

loc(R
d+1
+ × Rd) .

Some applications:

The strong boundary condition in the sense of Bardos, LeRoux, Nédélec for
rough initial u0 and boundary ub data: (∀λ ∈ R)(

sgn(u− λ) + sgn(λ− ub)
)
(f(u)− f(λ)) · ~ν ≥ 0 on ∂Ω .

Bürger, Frid, Karlsen (2007): The well-posedness of the initial-boundary
problem with zero-flux boundary condition.

Pfaff, Ulbrich (2015): The optimal control of initial-boundary value problems.

M. Erceg (UNIZG) Strong traces to degenerate parabolic equations 8/ 15



Degenerate parabolic equation (A′ ≥ 0)

(DP)

∂tu+ divxf(u) = D2
x ·A(u) in Rd+1

+ ,
(

divx(A′(u)∇xu)
)

u|t=0 = u0 ∈ L∞(Rd) ,

where f : R→ Rd, A : R→ Rd×dsym , a := A′ ≥ 0, and u : Rd+1
+ → R unknown.
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Definition of solutions (kinetic formulation)

(DP)

{
∂tu+ divxf(u) = D2

x ·A(u) in Rd+1
+ ,

u|t=0 = u0 ∈ L∞(Rd) .

Definition

u ∈ L∞(Rd+1
+ ) is called a quasi-solution to (DP1) if for a.e. λ ∈ R

∂t|u− λ|+ divx
(

sgn(u− λ) (f(u)− f(λ))
)

−D2
x · [sgn(u− λ)(A(u)−A(λ))] = −γ(t,x, λ) ,

holds in D′(Rd+1
+ ), where γ ∈ C(Rλ;M(Rd+1

+ )).

For A = 0 and γ ≥ 0 coincides with the previous definition of entropy solutions.
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Definition of solutions (kinetic formulation)

(DP)

{
∂tu+ divxf(u) = D2

x ·A(u) in Rd+1
+ ,

u|t=0 = u0 ∈ L∞(Rd) .

Theorem

If function u is a bounded quasi-solution to (DP1), then the function

h(t,x, λ) := sgn(u(t,x)− λ) = −∂λ|u(t,x)− λ|

is a weak solution to the following linear equation:

∂th+ divx (f ′ h)−D2
x · [A′(λ)h] = ∂λγ(t,x, λ) .

Lions, Perthame, Tadmor (1994)
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Why quasi-solutions?

Definition

u ∈ L∞(Rd+1
+ ) is called a quasi-solution to (DP1) if for a.e. λ ∈ R

∂t|u− λ|+ divx
(

sgn(u− λ) (f(u)− f(λ))
)

−D2
x · [sgn(u− λ)(A(u)−A(λ))] = −γ(t,x, λ) ,

holds in D′(Rd+1
+ ), where γ ∈ C(Rλ;M(Rd+1

+ )).

The most general class for which we can get the result.

In the heterogeneous case entropy solutions are also quasi-solutions.

If u is an unbounded entropy solution, then

sα,β(u) := max{α,min{u, β}}

is a bounded quasi-solution with

γ̃(t,x, λ) = γ(t,x, sα,β(λ))− 1

2

(
γ(t,x, α) + γ(t,x, β)

)
.
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Existence of entropy solutions to (DP)

(DP)

{
∂tu+ divxf(u) = D2

x ·A(u) in Rd+1
+ ,

u|t=0 = u0 ∈ L∞(Rd) .

smooth fluxes

Carrillo (1999): L∞ solutions
Chen, Perthame (2003): L1 solutions
Tadmor, Tao (2007): improved regularity under a non-degeneracy condition
Graf, Kunzinger, Mitrović (2017): on Riemannian manifolds

non-smooth fluxes (under a non-degeneracy condition)

Sazhenkov (2006), Panov (2009): heterogeneous ultra-parabolic equations,
i.e. A(λ) satisfies an ellipticity assumption on a subspace of Rd uniformly in λ
Lazar, Mitrović (2012): the result for heterogeneous ultra-parabolic equations
using a velocity averaging approach
Holden, Karlsen, Mitrović, Panov (2009): general but homogeneous A
(in E., Mǐsur, Mitrović (submitted) a similar result via velocity averaging
approach)
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Existence of strong traces for (DP1)

(DP1) ∂tu+ divxf(u) = D2
x ·A(u) in Rd+1

+ .

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) ???

Kwon (2009): scalar diffusion matrices A(u) = a(u)I without non-degeneracy
conditions

Aleksić, Mitrović (2013): traceable fluxes f and ultra-parabolic A (i.e. A = B ⊕ 0
where B > 0) without non-degeneracy conditions

“Fully degenerate” matrices A not covered, e.g.

a(λ) =

(
1√

λ2 + 1

[
λ 1
1 −λ

])[
0 0
0 λ2 + 1

](
1√

λ2 + 1

[
λ 1
1 −λ

])
=

[
1 −λ
−λ λ2

]
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Existence of strong traces for (DP1)

(DP1) ∂tu+ divxf(u) = D2
x ·A(u) in Rd+1

+ .

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd) ???

Theorem (E., Mitrović)

Let f ∈ C1(R;Rd) and let A ∈ C1,1(R;Rd×d) be such that for any λ ∈ R we have
a(λ) := A′(λ) is symmetric and positive semi-definite.
Then any quasi-solution u ∈ L∞loc(R+; Lploc(Rd)), for some p > 1, to (DP1) admits
the strong trace at t = 0.
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Proof – an important point

(DP1) ∂tu+ divxf(u) = D2
x ·A(u) in Rd+1

+ .

Which scaling to choose with respect to x in

um(t,x,y) = u
( t
m
,
x

m
+ y

)
?

If (∗) is not satisfied, we can reduce locally a on some (α, β) ⊆ R to that form,
and then apply above for sα,β(u) instead of u.
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Proof – an important point

(DP1) ∂tu+ divxf(u) = D2
x ·A(u) in Rd+1

+ .

If a(λ) = A′(λ) =

[
ã(λ) 0

0 0

]
, for ã(λ) ∈ Rk×k (k ∈ {1, . . . , d}), and

ã(λ) > 0

we use

um(t,x,y) = u
( t
m
,

x̃√
m

+ ỹ,
x̄

m
+ ȳ

)
where x = (x̃, x̄) ∈ Rk × Rd−k and apply a compactness result from Holden et al
(2009).

If (∗) is not satisfied, we can reduce locally a on some (α, β) ⊆ R to that form,
and then apply above for sα,β(u) instead of u.
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ã(λ) 0

0 0

]
, for ã(λ) ∈ Rk×k (k ∈ {1, . . . , d}), and

(∗)
(∀ξ̃ ∈ Rk \ {0})(∀(α′, β′) ⊆ R)

(α′, β′) 3 λ 7→ 〈ã(λ)ξ̃ | ξ̃〉 is not indentically equal to zero.

we use

um(t,x,y) = u
( t
m
,

x̃√
m

+ ỹ,
x̄

m
+ ȳ

)
where x = (x̃, x̄) ∈ Rk × Rd−k and apply a compactness result from Holden et al
(2009).

If (∗) is not satisfied, we can reduce locally a on some (α, β) ⊆ R to that form,
and then apply above for sα,β(u) instead of u.
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And...

...thank you for your attention :)

M. Erceg (UNIZG) Strong traces to degenerate parabolic equations 15/ 15


