Strong traces to degenerate parabolic equations

Marko Erceg

Department of Mathematics, Faculty of Science, University of Zagreb

Workshop on Control of Dynamical Systems Dubrovnik, $16^{\rm th}$ June 2021

Joint work with D. Mitrović

UIP-2017-05-7249 (MANDphy) IP-2018-01-2449 (MiTPDE)

Under which conditions any $\textit{solution}\ u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ to

$$\partial_t u + \operatorname{div}_{\mathbf{x}} \mathbf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) ,$$

admits the strong trace at t = 0, i.e. does there exist $u_0 \in L^{\infty}(\mathbb{R}^d)$ such that

ess
$$\lim_{t\to 0^+} u(t, \cdot) = u_0$$
 in $L^1_{loc}(\mathbb{R}^d)$.

 $\operatorname{div}_{\mathbf{x}} \mathbf{f}(u) \dots$ convective term $D^2_{\mathbf{x}} \cdot A(u) \dots$ diffusive term

Main question

Under which conditions any solution $u:\mathbb{R}^+\times\mathbb{R}^d\to\mathbb{R}$ to

$$\partial_t u + \operatorname{div}_{\mathbf{x}} \mathbf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) ,$$

admits the strong trace at t = 0, i.e. does there exist $u_0 \in L^{\infty}(\mathbb{R}^d)$ such that

ess
$$\lim_{t\to 0^+} u(t, \cdot) = u_0$$
 in $L^1_{loc}(\mathbb{R}^d)$.

Motivation for the equation: flow in porous media $(CO_2 \text{ sequestration})$

 \bullet heterogeneous layers \longrightarrow discontinuous flux and a lack of diffusion in some directions

Motivation for studying strong traces:

- Formulation, well-posedness, optimal control, etc., for initial-boundary problems.
- Characterising the limit of hyperbolic relaxation towards a scalar conservation law.

Under which conditions any solution $u:\mathbb{R}^+\times\mathbb{R}^d\to\mathbb{R}$ to

$$\partial_t u + \operatorname{div}_{\mathbf{x}} \mathbf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) ,$$

admits the strong trace at t = 0, i.e. does there exist $u_0 \in L^{\infty}(\mathbb{R}^d)$ such that

ess
$$\lim_{t\to 0^+} u(t,\cdot) = u_0$$
 in $L^1_{loc}(\mathbb{R}^d)$.

Let us first consider the case: A = 0 .

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d \,, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d) \,, \end{cases}$$

where $\mathsf{f}:\mathbb{R}\to\mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in \mathbf{x})

<u>Weak solutions</u>: $u \in L^1_{loc}(\mathbb{R}^{d+1}_+)$ s.t. $f(u) \in L^1_{loc}(\mathbb{R}^{d+1}_+; \mathbb{R}^d)$ and $\forall \varphi \in C^\infty_c(\mathbb{R}^{1+d})$

$$\int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0 \varphi(0, \cdot) \, d\mathbf{x} = 0 \, .$$

First order quasilinear equations

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathbf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d), \end{cases}$$

where $f : \mathbb{R} \to \mathbb{R}^d$ (homogeneous) flux, $u : \mathbb{R}^{d+1}_+ \to \mathbb{R}$ unknown. Classical solutions are too strong (we want allow discontinuities in \mathbf{x}) <u>Weak solutions:</u> $u \in L^1_{loc}(\mathbb{R}^{d+1}_+)$ s.t. $f(u) \in L^1_{loc}(\mathbb{R}^{d+1}_+; \mathbb{R}^d)$ and $\forall \varphi \in C^\infty_c(\mathbb{R}^{1+d})$ $\int_{\mathbb{R}^{d+1}} u\varphi_t + f(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0\varphi(0, \cdot) \, d\mathbf{x} = 0$.

Even for smooth f's non-uniqueness:

$$d = 1, \ f(\lambda) = \frac{\lambda^2}{2} \text{ (Burgers equation), } u_0(x) = \begin{cases} 0, & x < 0\\ 1, & x \ge 0 \end{cases}$$

Both functions are a weak solution:

$$u_1(t,x) = \begin{cases} 0 \ , & x < t/2 \\ 1 \ , & x \ge t/2 \end{cases} , \qquad u_2(x) = \begin{cases} 0 \ , & x < 0 \\ x/t \ , & 0 \le x < t \end{cases} \text{(rarefraction wave)} \\ 1 \ , & x \ge t \end{cases}$$

M. Erceg (UNIZG)

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d \,, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d) \,, \end{cases}$$

where $\mathsf{f}:\mathbb{R}\to\mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in \mathbf{x})

<u>Weak solutions</u>: $u \in L^1_{loc}(\mathbb{R}^{d+1}_+)$ s.t. $f(u) \in L^1_{loc}(\mathbb{R}^{d+1}_+; \mathbb{R}^d)$ and $\forall \varphi \in C^\infty_c(\mathbb{R}^{1+d})$

$$\int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0 \varphi(0, \cdot) \, d\mathbf{x} = 0 \, .$$

For the uniqueness we need to impose some conditions on discontinuities.

Consider only those weak solutions that can be reached as a limit $\varepsilon \to 0^+$ of the sequence of solutions (u^{ε}) :

$$\begin{cases} \partial_t u^{\varepsilon} + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u^{\varepsilon}) = \varepsilon \Delta u^{\varepsilon} & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d \,, \\ u^{\varepsilon}|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d) \,. \end{cases}$$

For $\eta \in C^2(\mathbb{R})$ convex (i.e. $\eta'' \ge 0$) and $\varphi \in C^2_c(\mathbb{R}^{1+d})$, $\varphi \ge 0$, we multiply the equation by $-\eta'(u^{\varepsilon})\varphi$ and integrate over \mathbb{R}^{1+d}_+ :

$$-\int_{\mathbb{R}^{d+1}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt = -\varepsilon \int_{\mathbb{R}^{d+1}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt$$

Vanishing Viscosity 2/2

Using

$$\partial_t u^\varepsilon \eta'(u^\varepsilon) = \partial_t \big(\eta(u^\varepsilon) \big) \quad \text{and} \quad \mathsf{f}'(u^\varepsilon) \cdot \nabla u^\varepsilon \eta'(u^\varepsilon) = \mathsf{div} \big(\mathsf{f}^\eta(u^\varepsilon) \big) \,,$$

where $\mathsf{f}^\eta(\lambda) = \int_0^\lambda \mathsf{f}'(s) \eta'(s)\, ds,$ for the left hand side we have

$$\begin{split} -\int_{\mathbb{R}^{1+d}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt \\ &= \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \partial_t \varphi + \mathsf{f}^{\eta}(u^{\varepsilon}) \cdot \nabla \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0) \varphi(0, \cdot) \, d\mathbf{x} \, . \end{split}$$

The right hand side satisfies

$$\begin{split} -\varepsilon \int_{\mathbb{R}^{1+d}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt &= \varepsilon \int_{\mathbb{R}^{1+d}_+} \eta'(u^{\varepsilon}) \nabla u^{\varepsilon} \cdot \nabla \varphi + \underbrace{|\nabla u^{\varepsilon}|^2 \eta''(u^{\varepsilon}) \varphi}_{\geq 0} \, d\mathbf{x} dt \\ &\geq -\varepsilon \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \Delta \varphi \, d\mathbf{x} dt \end{split}$$

Vanishing Viscosity 2/2

Using

$$\partial_t u^\varepsilon \eta'(u^\varepsilon) = \partial_t \big(\eta(u^\varepsilon) \big) \quad \text{and} \quad \mathsf{f}'(u^\varepsilon) \cdot \nabla u^\varepsilon \eta'(u^\varepsilon) = \mathsf{div} \big(\mathsf{f}^\eta(u^\varepsilon) \big) \,,$$

where $\mathsf{f}^\eta(\lambda) = \int_0^\lambda \mathsf{f}'(s) \eta'(s)\, ds,$ for the left hand side we have

$$\begin{split} -\int_{\mathbb{R}^{1+d}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt \\ &= \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \partial_t \varphi + \mathsf{f}^{\eta}(u^{\varepsilon}) \cdot \nabla \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0) \varphi(0, \cdot) \, d\mathbf{x} \, . \end{split}$$

The right hand side satisfies

$$\begin{split} -\varepsilon \int_{\mathbb{R}^{1+d}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt &= \varepsilon \int_{\mathbb{R}^{1+d}_+} \eta'(u^{\varepsilon}) \nabla u^{\varepsilon} \cdot \nabla \varphi + \underbrace{|\nabla u^{\varepsilon}|^2 \eta''(u^{\varepsilon}) \varphi}_{\geq 0} \, d\mathbf{x} dt \\ &\geq -\varepsilon \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \Delta \varphi \, d\mathbf{x} dt \xrightarrow{\varepsilon \to 0} 0 \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathbf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{split} & \underline{\mathsf{Entropy solutions:}} \; u \text{ a weak solution and s.t. } \forall \eta \in \mathrm{C}(\mathbb{R}) \text{ convex and} \\ & \overline{\forall \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^{1+d}), \; \varphi \geq 0,} \\ & \int_{\mathbb{R}^{d+1}} \eta(u) \varphi_t + \mathrm{f}^\eta(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0) \varphi(0, \cdot) \, d\mathbf{x} \geq 0 \,, \end{split}$$

here $f^{\eta}(\lambda) = \int_0^{\lambda} f' \eta' \, ds$ is an entropy-flux.

- η is called (mathematical) entropy ($-\eta$ corresponds to physical entropy)
- The above inequality is due to the fact that the physical entropy has a tendency to increase in time, i.e. the mathematical entropy decreases in time

Entropy solutions

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d). \end{cases}$$

 $\underline{ \mathsf{Entropy solutions:}}_{\varphi \geq 0,} \left(\mathsf{Kružkov}\right) \, u \in \mathrm{L}^{\infty}(\mathbb{R}^{d+1}_{+}) \, \mathrm{s.t.} \, \, \forall \lambda \in \mathbb{R} \, \, \mathrm{and} \, \, \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}),$

$$\int_{\mathbb{R}^{d+1}_+} |u-\lambda|\varphi_t + \operatorname{sgn}(u-\lambda)(\mathsf{f}(u)-\mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0-\lambda|\varphi(0,\cdot) \, d\mathbf{x} \ge 0 \, .$$

Entropy solutions

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d). \end{cases}$$

 $\underline{ \text{Entropy solutions:}}_{\varphi \geq 0,} \text{ (Kružkov) } u \in \mathrm{L}^{\infty}(\mathbb{R}^{d+1}_{+}) \text{ s.t. } \forall \lambda \in \mathbb{R} \text{ and } \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}),$

$$\int_{\mathbb{R}^{d+1}_+} |u-\lambda|\varphi_t + \operatorname{sgn}(u-\lambda)(\mathsf{f}(u)-\mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0-\lambda|\varphi(0,\cdot) \, d\mathbf{x} \ge 0 \, .$$

$$\lambda = \|u\|_{L^{\infty}} \implies \int_{\mathbb{R}^{d+1}_{+}} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0\varphi(0,\cdot) \, d\mathbf{x} \ge 0$$
$$\lambda = -\|u\|_{L^{\infty}} \implies -\int_{\mathbb{R}^{d+1}_{+}} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt - \int_{\mathbb{R}^d} u_0\varphi(0,\cdot) \, d\mathbf{x} \ge 0$$

Entropy solutions

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathbf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d). \end{cases}$$

 $\underline{ \text{Entropy solutions:}}_{\varphi \geq 0,} \left(\mathsf{Kružkov} \right) \, u \in \mathrm{L}^{\infty}(\mathbb{R}^{d+1}_{+}) \, \text{s.t.} \, \, \forall \lambda \in \mathbb{R} \, \, \text{and} \, \, \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}),$

$$\int_{\mathbb{R}^{d+1}_+} |u-\lambda|\varphi_t + \operatorname{sgn}(u-\lambda)(\mathsf{f}(u)-\mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0-\lambda|\varphi(0,\cdot) \, d\mathbf{x} \ge 0 \, .$$

Kružkov (1970): existence and uniqueness of entropy solutions for smooth heterogeneous fluxes f.

• Existence: vanishing viscosity method; Uniqueness: method of doubling variables

Panov (2010): existence of entropy solutions for non-smooth heterogeneous fluxes under non-degeneracy assumptions

• u_n solution for the regularised flux f_n , and apply a compactness result

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{split} &\forall \lambda \in \mathbb{R} \text{ and } \forall \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^{1+d}), \, \varphi \geq 0; \\ &\int_{\mathbb{R}^{d+1}_+} |u-\lambda| \varphi_t + \mathrm{sgn}(u-\lambda)(\mathsf{f}(u)-\mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0-\lambda| \varphi(0,\cdot) \, d\mathbf{x} \geq 0 \,. \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{aligned} &\forall \lambda \in \mathbb{R} \text{ and } \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}), \, \varphi \geq 0; \\ &\int_{\mathbb{R}^{d+1}_{+}} |u - \lambda| \varphi_{t} + \mathrm{sgn}(u - \lambda)(\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^{d}} |u_{0} - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \geq 0 \,. \end{aligned}$$

\Leftrightarrow

$$\begin{aligned} (\mathsf{a.e.}\ \lambda \in \mathbb{R}) \qquad \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathrm{sgn}(u - \lambda)(\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) &\leq 0 \quad \mathrm{in} \quad \mathcal{D}'(\mathbb{R}^{d+1}_+) \,, \\ & \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \mathrm{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \end{aligned}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathbf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d). \end{cases}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d). \end{cases}$$

$$\begin{aligned} (\mathsf{a.e.}\ \lambda \in \mathbb{R}) \qquad & \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathrm{sgn}(u - \lambda)(\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) \leq 0 \quad \mathrm{in} \quad \mathcal{D}'(\mathbb{R}^{d+1}_+) \,, \\ & \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \mathrm{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \quad \mathrm{strong \ trace} \end{aligned}$$

- Vasseur (2001): existence of strong traces for entropy solutions for smooth fluxes f and with a non-degeneracy condition
- Panov (2005, 2007): existence of strong traces for entropy solutions (without non-degeneracy conditions)
- Neves, Panov, Silva (2018): existence of strong traces for entropy solutions for heterogeneous fluxes f and with a non-degeneracy condition

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d). \end{cases}$$

$$\begin{aligned} (\mathsf{a.e.}\ \lambda \in \mathbb{R}) \qquad & \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathrm{sgn}(u - \lambda)(\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) \leq 0 \quad \mathrm{in} \quad \mathcal{D}'(\mathbb{R}^{d+1}_+) \,, \\ & \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \mathrm{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \quad \mathrm{strong \ trace} \end{aligned}$$

- Vasseur (2001): existence of strong traces for entropy solutions for smooth fluxes f and with a non-degeneracy condition
- Panov (2005, 2007): existence of strong traces for entropy solutions (without non-degeneracy conditions)
- Neves, Panov, Silva (2018): existence of strong traces for entropy solutions for heterogeneous fluxes f and with a non-degeneracy condition

The result does not hold for weak solutions!

Strong traces (A = 0) – comments

$$\partial_t u + \operatorname{div}_{\mathbf{x}} \mathsf{f}(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d$$

Idea of the proof:

u admits the strong trace \iff

$$u_m(t,\mathbf{x},\mathbf{y}) := u\Big(\frac{t}{m},\frac{\mathbf{x}}{m} + \mathbf{y}\Big) \text{ is precompact in } \mathrm{L}^1_{loc}(\mathbb{R}^{d+1}_+\times\mathbb{R}^d)\,.$$

Some applications:

• The strong boundary condition in the sense of Bardos, LeRoux, Nédélec for rough initial u_0 and boundary u_b data: $(\forall \lambda \in \mathbb{R})$

$$(\operatorname{sgn}(u-\lambda)+\operatorname{sgn}(\lambda-u_b))(\mathsf{f}(u)-\mathsf{f}(\lambda))\cdot\vec{\nu}\geq 0 \text{ on } \partial\Omega$$
.

- Bürger, Frid, Karlsen (2007): The well-posedness of the initial-boundary problem with zero-flux boundary condition.
- Pfaff, Ulbrich (2015): The optimal control of initial-boundary value problems.

$$(\mathsf{DP}) \quad \begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in} \quad \mathbb{R}^{d+1}_+ \ , \qquad \left(\mathsf{div}_{\mathbf{x}}(A'(u) \nabla_{\mathbf{x}} u) \right) \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d) \ , \end{cases}$$

where $\mathsf{f}:\mathbb{R}\to\mathbb{R}^d$, $A:\mathbb{R}\to\mathbb{R}_{\mathrm{sym}}^{d\times d}$, $a:=A'\geq 0$, and $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Definition of solutions (kinetic formulation)

(DP)
$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \ ,\\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d) \ . \end{cases}$$

Definition

 $u \in L^{\infty}(\mathbb{R}^{d+1}_+)$ is called a quasi-solution to (DP₁) if for a.e. $\lambda \in \mathbb{R}$

$$\begin{split} \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathsf{sgn}(u - \lambda) \left(\mathsf{f}(u) - \mathsf{f}(\lambda) \right) \Big) \\ &- D_{\mathbf{x}}^2 \cdot \left[\mathsf{sgn}(u - \lambda) (A(u) - A(\lambda)) \right] = -\gamma(t, \mathbf{x}, \lambda) \end{split}$$

holds in $\mathcal{D}'(\mathbb{R}^{d+1}_+)$, where $\gamma \in C(\mathbb{R}_{\lambda}; \mathcal{M}(\mathbb{R}^{d+1}_+))$.

For A = 0 and $\gamma \ge 0$ coincides with the previous definition of entropy solutions.

,

Definition of solutions (kinetic formulation)

$$(\mathsf{DP}) \qquad \qquad \begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \ , \\ u|_{t=0} = u_0 \in \mathcal{L}^\infty(\mathbb{R}^d) \ . \end{cases}$$

Theorem

If function u is a bounded quasi-solution to (DP_1) , then the function

$$h(t, \mathbf{x}, \lambda) := \operatorname{sgn}(u(t, \mathbf{x}) - \lambda) = -\partial_{\lambda} |u(t, \mathbf{x}) - \lambda|$$

is a weak solution to the following linear equation:

$$\partial_t h + \operatorname{div}_{\mathbf{x}} \left(\mathbf{f}' h \right) - D_{\mathbf{x}}^2 \cdot \left[A'(\lambda) h \right] = \partial_\lambda \gamma(t, \mathbf{x}, \lambda) \ .$$

Lions, Perthame, Tadmor (1994)

Why quasi-solutions?

Definition

 $u \in L^{\infty}(\mathbb{R}^{d+1}_+)$ is called a quasi-solution to (DP₁) if for a.e. $\lambda \in \mathbb{R}$

$$\begin{split} \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathsf{sgn}(u - \lambda) \left(\mathsf{f}(u) - \mathsf{f}(\lambda) \right) \Big) \\ &- D_{\mathbf{x}}^2 \cdot \left[\mathsf{sgn}(u - \lambda) (A(u) - A(\lambda)) \right] = -\gamma(t, \mathbf{x}, \lambda) \;, \end{split}$$

holds in $\mathcal{D}'(\mathbb{R}^{d+1}_+)$, where $\gamma \in C(\mathbb{R}_{\lambda}; \mathcal{M}(\mathbb{R}^{d+1}_+))$.

- The most general class for which we can get the result.
- In the heterogeneous case entropy solutions are also quasi-solutions.
- If u is an unbounded entropy solution, then

$$s_{\alpha,\beta}(u) := \max\{\alpha, \min\{u, \beta\}\}$$

is a bounded quasi-solution with

$$\tilde{\gamma}(t,\mathbf{x},\lambda) = \gamma(t,\mathbf{x},s_{\alpha,\beta}(\lambda)) - \frac{1}{2} \left(\gamma(t,\mathbf{x},\alpha) + \gamma(t,\mathbf{x},\beta) \right) \,.$$

Existence of entropy solutions to (DP)

(DP)
$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+, \\ u|_{t=0} = u_0 \in \mathcal{L}^{\infty}(\mathbb{R}^d) \,. \end{cases}$$

- smooth fluxes
 - Carrillo (1999): L^{∞} solutions
 - Chen, Perthame (2003): L^1 solutions
 - Tadmor, Tao (2007): improved regularity under a non-degeneracy condition
 - Graf, Kunzinger, Mitrović (2017): on Riemannian manifolds
- non-smooth fluxes (under a non-degeneracy condition)
 - Sazhenkov (2006), Panov (2009): heterogeneous ultra-parabolic equations, i.e. $A(\lambda)$ satisfies an ellipticity assumption on a subspace of \mathbb{R}^d uniformly in λ
 - Lazar, Mitrović (2012): the result for heterogeneous ultra-parabolic equations using a velocity averaging approach
 - Holden, Karlsen, Mitrović, Panov (2009): general but homogeneous A (in E., Mišur, Mitrović (submitted) a similar result via velocity averaging approach)

(DP₁)
$$\partial_t u + \operatorname{div}_{\mathbf{x}} f(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \ .$$

ess
$$\lim_{t\to 0^+} u(t,\cdot) = u_0$$
 in $L^1_{\text{loc}}(\mathbb{R}^d)$???

- Kwon (2009): scalar diffusion matrices A(u) = a(u)I without non-degeneracy conditions
- Aleksić, Mitrović (2013): traceable fluxes f and ultra-parabolic A (i.e. $A = B \oplus 0$ where B > 0) without non-degeneracy conditions

"Fully degenerate" matrices A not covered, e.g.

$$a(\lambda) = \left(\frac{1}{\sqrt{\lambda^2 + 1}} \begin{bmatrix} \lambda & 1\\ 1 & -\lambda \end{bmatrix}\right) \begin{bmatrix} 0 & 0\\ 0 & \lambda^2 + 1 \end{bmatrix} \left(\frac{1}{\sqrt{\lambda^2 + 1}} \begin{bmatrix} \lambda & 1\\ 1 & -\lambda \end{bmatrix}\right) = \begin{bmatrix} 1 & -\lambda\\ -\lambda & \lambda^2 \end{bmatrix}$$

$$(\mathsf{DP}_1) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \ .$$

ess $\lim_{t\to 0^+} u(t, \cdot) = u_0$ in $L^1_{loc}(\mathbb{R}^d)$???

Theorem (E., Mitrović)

Let $f \in C^1(\mathbb{R}; \mathbb{R}^d)$ and let $A \in C^{1,1}(\mathbb{R}; \mathbb{R}^{d \times d})$ be such that for any $\lambda \in \mathbb{R}$ we have $a(\lambda) := A'(\lambda)$ is symmetric and positive semi-definite. Then any quasi-solution $u \in L^{\infty}_{loc}(\mathbb{R}^+; L^p_{loc}(\mathbb{R}^d))$, for some p > 1, to (DP₁) admits the strong trace at t = 0.

(DP₁)
$$\partial_t u + \operatorname{div}_{\mathbf{x}} f(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+.$$

Which scaling to choose with respect to ${\bf x}$ in

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\mathbf{x}}{m} + \mathbf{y}\right)?$$

$$(\mathsf{DP}_1) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

If
$$a(\lambda) = A'(\lambda) = \begin{bmatrix} \tilde{a}(\lambda) & 0\\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda) \in \mathbb{R}^{k \times k}$ $(k \in \{1, \dots, d\})$, and
 $\tilde{a}(\lambda) > 0$

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x} = (\tilde{\mathbf{x}}, \bar{\mathbf{x}}) \in \mathbb{R}^k \times \mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

$$(\mathsf{DP}_1) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \ .$$

If
$$a(\lambda) = A'(\lambda) = \begin{bmatrix} \tilde{a}(\lambda) & 0 \\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda) \in \mathbb{R}^{k \times k}$ $(k \in \{1, \dots, d\})$, and
(*) $(\forall \tilde{\xi} \in \mathbb{R}^k \setminus \{0\})(\forall (\alpha', \beta') \subseteq \mathbb{R})$
 $(\alpha', \beta') \ni \lambda \mapsto \langle \tilde{a}(\lambda) \tilde{\xi} \mid \tilde{\xi} \rangle$ is not indentically equal to zero.

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x} = (\tilde{\mathbf{x}}, \bar{\mathbf{x}}) \in \mathbb{R}^k \times \mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

$$(\mathsf{DP}_1) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

If
$$a(\lambda) = A'(\lambda) = \begin{bmatrix} \tilde{a}(\lambda) & 0\\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda) \in \mathbb{R}^{k \times k}$ $(k \in \{1, \dots, d\})$, and
(*) $(\forall \tilde{\xi} \in \mathbb{R}^k \setminus \{0\})(\forall (\alpha', \beta') \subseteq \mathbb{R})$
 $(\alpha', \beta') \ni \lambda \mapsto \langle \tilde{a}(\lambda) \tilde{\xi} \mid \tilde{\xi} \rangle$ is not indentically equal to zero.

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x} = (\tilde{\mathbf{x}}, \bar{\mathbf{x}}) \in \mathbb{R}^k \times \mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

If (*) is not satisfied, we can reduce locally a on some $(\alpha, \beta) \subseteq \mathbb{R}$ to that form, and then apply above for $s_{\alpha,\beta}(u)$ instead of u.

M. Erceg (UNIZG)

...thank you for your attention :)